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The Clustering Problem

Cluster analysis is the process of grouping or segmenting a collection
of objects into subsets (”clusters”), such that those within each
cluster are more closely related to one another than objects assigned
to different clusters [Hastie, Tibshirani, Friedman, 2009].

Classical Algortithms:

Agglomerative Hierarchical Clustering
k-means Clustering

Model-based clustering methods using finite mixture models.
Where each mixture component corresponds to a cluster.
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Bayesian Nonparametric Clustering

The data is assumed conditionally i.i.d. with density

f(y|P ) =

∫
K(y|P )dP (θ)

Where K(y|P ) is a specified parametric density on the sample space
with mixing parameter θ ∈ Θ and P is a probability measure on Θ.

As a prior on the mixing measure we select a Dirichlet process.

The Dirichlet process has a stick-breaking representation:

v, v, ...
i.i.d.∼ B(, α), wj = vj

∏j−
i= (− vi) for j = 1, 2, ... and

θ1, θ2θ1, θ2θ1, θ2, ...
i.i.d.∼ P, then the random discrete measure

P =
∞∑
j=

wjδθj

is distributed as a DP (α, P) [Sethuraman, 1994].
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Bayesian Nonparametric Clustering

The density is modeled with a countably infinite mixture model

Since P is discrete a.s. this model induces a latent partinioning c of
the data.

The partition can be represented by c = (C, ..., CkN ), where Cj
contains the indices of data points in the jth cluster and kN is the
number of clusters in the sample of size N .
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Bayesian Nonparametric Clustering

The number of mixture components is infinite.

There are

SN,k =


k!

k∑
j=

(−)j
(
k

j

)
(k − j)N

a Stirling number of the second kind ways to partition the N data
points into k groups and

BN =
N∑
k=

SN,k

a Bell number possible partitions of the N data points (Intractable).

Thus MCMC techniques are employed.
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Latent Partitioning

The partition space C equipped with ≤ is a partially ordered set.

For c, ĉ ∈ C, c ≤ ĉ if for all i = 1, ..., kN ,Ci ⊆ Ĉj for some

j ∈ {1, ...k̂N}.
For any c, ĉ ∈ C, c is covered by ĉ, denoted by c ≺ ĉ if c < ĉ and
there is no ˆ̂c ∈ C such that c < ˆ̂c < ĉ.

The partition space forms a lattice as every pair of partitions has a
greatest lower bound (g.l.b.) and a lowest upper bound (l.u.b.).

Meet operation: c ∧ ĉ = g .l .b.(c, ĉ)
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Latent Partitioning

{1, 2, 3}

{1}{2, 3} {2}{1, 3} {3}{1, 2}

{1}{2}{3}

Hasse Diagram for the lattice of partitions with sample size N = 3. A line
is drawn from c up to ĉ when c is covered by ĉ.
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Point Estimation for Clustering

What is an appropriate point estimate of the partition, based on the
posterior?

Some simple approaches are:

The posterior mode as point estimate.

Use the posterior similarity matrix to get a point estimate.

A more rigorous approach is to define a loss function over partitions to
obtain a point estimate. Two specific loss functions will be analyzed:

Binder’s Loss.

Variation of Information (VI).
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Binder’s Loss

The Binder’s Loss is a quadratic function that penalizes locating two
observations in the same cluster when they should be in different
clusters, and locating the observations in different clusters when they
should be in the same one.

If c is the true clustering and ĉ is its estimation, then the Binder’s
Loss is

B(c, ĉ) =
∑
n<n′

I(cn = cn′) I(ĉn 6= ĉn′) + I(cn 6= cn′) I(ĉn = ĉn′)

where I is the indicator function, and the partitions of size N are
represented as c = (c1, ..., cN), where cn = j if the nth data point is in
the j th cluster.
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Variation of Information

The Variation of Information (VI) compares the information contained
in two clusterings with the information shared between the two
clusterings. Its formula is the following:

VI (c, ĉ) = H(c) + H(ĉ)− 2I (c, ĉ)

Here, the first two terms represent the entropy of the two clusterings,
and the last term is the mutual information between them.

Since I (c, ĉ) = H(c) + H(ĉ)− H(c, ĉ), the VI can be rewritten as

VI (c, ĉ) = −H(c)− H(ĉ) + 2H(c, ĉ)
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Comparison between Binder’s Loss and VI

The (N−invariant) formulas of both loss functions are:

B̃(c, ĉ) =

kN∑
i=1

(
ni+
N

)2 +

k̂N∑
j=1

(
n+j

N
)2 − 2

kN∑
i=1

k̂N∑
j=1

(
nij
N

)2

VI (c, ĉ) =

kN∑
i=1

ni+
N

log2(
ni+
N

) +

k̂N∑
j=1

n+j

N
log2(

n+j

N
)− 2

kN∑
i=1

k̂N∑
j=1

nij
N

log2(
nij
N

)

where nij = |Ci ∩ Ĉj |, ni+ =
∑

j nij and n+j =
∑

i nij .
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Comparison between Binder’s Loss and VI

Binder’s Loss and VI share multiple properties, and also have important
differences.

Among the shared properties we find:

Both loss functions are metrics on the space of partitions.

If c ≥ ĉ ≥ ˆ̂c, then:

d(c, ˆ̂c) = d(c, ĉ) + d(ĉ, ˆ̂c).
d(c, ĉ) = d(c, ĉ ∧ c) + d(ĉ, ĉ ∧ c).

Some of their differences are the following:

Binder’s Loss tends to estimate a partition with more clusters than VI.

VI (c, ĉ) ≤ log2(N), while B̃(c, ĉ) ≤ 1− 1
N .
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Actual implementation

c∗ = arg min
ĉ

E [L(c, ĉ) | data]

The posterior distribution of the partition is estimated from the
output of a Markov Chain

In the case Variation Information, for a given ĉ the Monte Carlo
approximation of E[L(c, ĉ) | data] is of order MN2 where M is the
numbers of elements of the Markov chain

For any practical problem, exploring every partition is impossible:
B20 = 51.7 · 1012

A possibility is to restrict the set of partitions for the optimization
problem

Another possibility: greedy search algorithm
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Building up a simulation study

Validation of the results found by [Wade, Ghahramani, 2018]: the VI
criterion gives as result a partition that is in line with our intuitive
idea of clustering .

Figure: [Wade, Ghahramani, 2018]
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Building up a simulation study

Simulate data from known distributions.

Running simulations multiple times due to the intrinsic randomness.

Computational issues: we will have to write the code in C++.
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The project

Study how this two different strategies behave in the case the model is
misspecified. 3 possible ways to misspecify the model:

Through the mean parameter, setting it far away from the true value.

Through the variance parameter, setting a flat distribution or a spiky
one.

Through the α parameter of the Dirichlet prior, related to the weights
of the mixture and consequently the number of clusters.

Do the two methods behave in the same way?
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Possible Extension

Consider a different formulation of the Binder’s loss, that takes into
account triplets instead of pairs.
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